Go Back   Corvette Forum > C4 Corvettes, 1984 - 1996 > C4 ZR-1 Discussion
Sign in using an external account
Register Forgot Password?
Register Search Today's Posts Mark Forums Read FAQ Vendor Directory
Search
C4 ZR-1 Discussion General ZR-1 Corvette Discussion, LT5 Corvette Technical Info, Performance Upgrades, Suspension Setup for Street or Track

Welcome to Corvetteforum.com!
Welcome to Corvetteforum.com.

You are currently viewing our forum as a guest, which gives you limited access to view most discussions and access our other features. By joining our community, at no cost, you will have access to post topics, communicate privately with other members (PM), respond to polls, upload content and access many other special features. Registration is free, fast and simple, join Corvetteforum.com today!


Reply
 
Thread Tools Search this Thread
Old 02-20-2012, 11:44 PM   #1
Dynomite
Tech Contributor
Support Corvetteforum!
 
Dynomite's Avatar
 
Member Since: Sep 2009
Default Tech Info - LT5 Modifications/Rebuild Tricks (500+hp)

91' ZR-1 (LT5) Modifications/Rebuild Tricks (500+hp). See Section C and Section E Below for specific details.

Complete upgrade of ALL photos (IPhone 4s with high quality 8-megapixel iSight camera and Photo Transfer App) in this thread and referenced links taking place as we speak

Have some fun Black Hills Corvette Classic 2013

Any word or group of words underlined are Left Clickable Links

A. See Technical Index which is an INDEX of Technical Posts in this thread.

B. See Solutions which is an index for Technical Posts including those Posts in the C4 ZR-1 Discussion Section.

Post 102. SOLUTIONS Overview and Ebay Searches
Post 103. ZR1 General
Post 104. ZR1 Electrical
Post 105. ZR1 Engine
Post 106. ZR1 Drive Train
Post 107. Awesome
Post 108. ZR1 Engine Fuel, Lubrication, Cooling, and Exhaust
Post 109. ZR1 Specifications, Restorations, Air, Audio, Lifts
Post 110. ZR1 Engine (LT5) Bolts and Hydraulics

C. See LT5 Specific Rebuild Tricks which includes complete photo coverage of an LT5 Rebuild including engine removal and installation in this thread.

D. Related threads found in the C4 ZR-1 Discussion Section are as follows:

Tech Info - LT5 Eliminated Systems LT5 Eliminated Systems
Tech Info - Marc Haibeck on LT5 Eliminated Secondaries Marc Haibeck on LT5 Eliminated Secondaries
Tech Info - LT5 Added Systems LT5 Added Systems
Tech Info - Removing a Pressed In Fitting Removing a Pressed In Fitting
Tech Info - LT5 New Rebuild Issues (Lifters and Camshafts) LT5 New Rebuild Issues (Lifters and Camshafts)
Tech Info - LT5 Timing Chain and Engine Pulses LT5 Timing Chain Calculations
Tech Info - LT5/ZR-1 Technical Calculations LT5/ZR-1 Technical Calculations
Ben's 90' Complete Restoration including the rebuild of an LT5 bottom to top Ben's 90' Restoration

HELP threads:
For additional Help Posting Photos Creating Albums and Posting Photos
For additional Help in creating Posts using Link References Reference Link Names

E. Overview of ZR-1 (LT5) Modifications/Rebuild Tricks (500+hp)



1. Systems added included LT5X Head Studs and an Oil Catch Can for the PCV system.
2. Several systems were eliminated including the secondaries, TB coolant, Air Injection system, and Vacuum system.
3. LT5 engine was highly ported top end with reground camshafts installed.
4. Included in this thread are the modifications of a 90' Corvette (L98).

1. LT5X Studs (Randy Woods)........................................ ...2. 200 Amp Alternator


3. Eliminated Systems (Secondaries)............................4. Plenum, TB Coolant eliminated


5. Reground Camshafts (Pete)......................................6. Air Horn, Plenum, IH, Head Porting (Locobob)


Last UPDATE of post 1 May, 2014

Last edited by Dynomite; 04-27-2014 at 08:49 AM.
Dynomite is offline   Reply With Quote
Old 02-20-2012, 11:44 PM   #2
Dynomite
Tech Contributor
Support Corvetteforum!
 
Dynomite's Avatar
 
Member Since: Sep 2009
Default Technical Index

Technical Index

INDEX of Technical Posts in ZR-1 (LT5) Modifications/Rebuild Tricks (500+hp) thread.
Left click on any Link Name as described below.


This Index is organized by Headings from General Information (Posts 3 - Post 6) to Engine Cooling (Post 7 - Post 14), Lifting (Post 15 - Post 16), Lubrication (Post 18 - Post 20), Camshaft Timing (Post 21 - Post 28), Top End Restoration (Post 29 - Post 34), Transmission (Post 35 - Post 39), Drive Train & Brakes (Post 40 - Post 44), Exhaust System (Post 45 - Post 47), Electrical/MISC (Post 48 - Post 59) , Audio (Post 60 - Post 61), 1990 LT5 Specific Rebuild Tricks (Post 62 - Post 69), Bling and Performance (Post 70 - Post 75), 1991 LT5 Specific Rebuild Tricks (Post 76 - Post 96), TIPS (Post 97 - Post 99), Tools and LT5 Differences (Post 100 - Post 101), Solutions (Post 102 - Post 110), Ebay Searches and Acronyms (Post 111), Additional Information (Post 113 - Post 117), Miscellaneous Topics (Post 118 - 130), Resizing Photos and New Photobucket (Post 131 - Post 132), Other Topics (Post 133 - 140), Questions and Answeres (Posts Beyond 140).

GENERAL
Post 3 - LT5/ZR-1 Fluids
Post 4 - General Bolt Length, Bolt Torque, Loctite, and Tools
Post 5 - Use of thread Lubricants, Loctite and Sealants
Post 6 - Manual Supplement, Secondary Diagnostics, Sensors, and Prom Codes.

ENGINE COOLING
Post 7 - LT5 Thermostats
Post 8 - LT5 Radiator and Initial Coolant Fill Tricks
Post 9 - Using HVAC Display for Engine Coolant Temperature
Post 10 - Water Pump, Coolant Temperatures, and Coolant
Post 11 - Radiator Debris Screens
Post 12 - Getting The Air Out of the Coolant System
Post 13 - TB Coolant Discussion
Post 14 - Coolant Characteristics (Mix, Pressure, Elevation)
Post - Eliminated TB Coolant Photos and Details

LIFTING
Post 15 - Lifting The LT5
Post 16 - Lifting and Towing the ZR-1
Post 17 - Kudos

LUBRICATION
Post 18 - Engine Lubrication System Functional Discussion
Post 19 - LT5 Lubrication Tricks
Post 20 - Potential Oil Leaks and the OPRV Cover Plate

CAMSHAFT TIMING
Post 21 - LT5 Camshaft Specifications and Camshaft General Timing (pinning)
Post 22 - LT5 Camshaft Specific Timing (degree wheel)
Post 23 - LT5 Camshaft Timing Additional Tricks
Post 24 - LT5 Timing Diagrams and Timing Chain Effective Lengths
Post 25 - LT5 Timing Chains and Sprockets
Post 26 - Setting/Installing the Chain Tensioners Tricks
Post 27 - Cam Cover Installation Tricks
Post 28 - PCV system (Need for Oil Catch Can)

TOP END RESTORATION
Post 29 - Plenum Pull
Post 30 - LT5 IH, Fuel Rails, Plenum Install Tricks
Post 31 - Vacuum Systems 90' and 91' (Secondary and Cruize/HVAC)
Post 32 - Eliminated IH Housing and Throttle Body (TB) Coolant system Tricks
Post 33 - Eliminated Secondary Throttles/shafts Tricks
Post 34 - Stainless Steel Air Box and Air Filter (L98 and LT5)

TRANSMISSION
Post 35 - Pilot Bearing
Post 36 - ZR-1 Transmission Install and Lift Tricks
Post 37 - Vibration Issues Diagnosis
Post 38 - Throwout Bearings and Clutch Forks
Post 39 - C4 Beam Plates and Installation

DRIVE TRAIN AND BRAKES
Post 40 - Tires and Other Modifications
Post 41 - ZR-1 (90' and 91') Wilwood Rotors and C4 to C5-Z06 Conversion
Post 42 - Going from 3:45 to 4:10 Differential
Post 43 - LT5 Final Inspection including Brake Tricks
Post 44 - Parts

EXHAUST SYSTEM
Post 45 - Exhaust System Replace with Headers
Post 46 - Exhaust Headers Locking Bolt Tricks
Post 47 - Installing the LT5 with Headers TIPS

ELECTRICAL/MISC
Post 48 - 1990 and 1991 Fuses
Post 49 - Backup Tail Light Switch
Post 50 - How to Replace the Wiper Motor
Post 51 - LED reduces battery current load related to Alternator Pulley Diameter
Post 52 - Starter, Starter Relay, Wiring Harness, Battery, and Plugs Tricks
Post 53 - Electrical Ground Connections and Installing Starter Relay
Post 54 - Ignition Key Codes and Clearing INFL REST Codes
Post 55 - CA SMOG Certification
Post 56 - ABS Code - Definition
Post 57 - ZR1 ECM CODES 1990 TO 1992
Post 58 - Recharging The AC System
Post 59 - Crankshaft Sensor Testing/Replacement by Alberta ZR1

Audio
Post 60 - Bose Speaker Amp Options TIPS
Post 61 - Low Mileage ZR-1 Restoration (Audio, Injectors, Starter, Clutch Hydraulics)

1990 LT5 SPECIFIC TOP END REBUILD TRICKS
Post 62 - 1990 LT5 Top End Rebuild (Including Wilwood Front Brakes)
Post 63 - Removing Plenum (including the 10 minute Plenum Removal)
Post 64 - Inspection, Testing and Reconditioning the Valley, Starter, and Coils
Post 65 - Electrical Reconditioning (including grounds and Alternator Connector Boot)
Post 66 - Secondary Functional Test and Reconditioning the Secondary Actuators
Post 67 - Removing Cam Cover and Camshaft Timing Inspection
Post 68 - Eliminating TB Coolant and Air Induction, Added Oil Catch Can and Painting
Post 69 - Summary of 90' Reconditioning/Modifications

BLING AND PERFORMANCE
Post 70 - Bling (Carter and Others)
Post 71 - 1991 ZR-1 (LT5) Performance
Post 72 - ZR-1 (LT5) Modifications (500+ HorsePower)
Post 73 - 1990 Corvette (L98) Performance
Post 74 - 1990 Corvette (L98) Modifications
Post 75 - 1990 ZR-1 (LT5) Performance/Reconditioning/Modifications

1991 LT5 SPECIFIC REBUILD TRICKS
Post 76 - 1991 LT5 Rebuild Tricks
Post 77 - New Piston Sleeve and Piston
Post 78 - Timing Chain Guides Installation
Post 79 - Timing Chain Idler Sprocket Lubrication and Installation
Post 80 - Front Cover, OPRV Cover, Water Pump, Harmonic Balancer
Post 81 - Oil Pan (Oil level and Knock Sensor), Flywheel, Clutch, Bell Housing
Post 82 - Checking for Oil Leaks/Making your own SS Braided Oil Lines
Post 83 - Installing Heads and Camshafts
Post 84 - Camshaft Timing
Post 85 - Camshaft Timing (Locking the Camshafts) and Camshaft Lubrication
Post 86 - Cam Covers (Filters and Wear Strips)
Post 87 - Installing Headers and Exhaust
Post 88 - Installing Engine In ZR1
Post 89 - ECM Chip and Other Electrical Connectors
Post 90 - Alternator, AC Pump, Power Steering Pump
Post 91 - Installing Fuel Rails and Ignition Coils
Post 92 - Installing Plenum, TB, and Air Cleaner
Post 93 - Filling With Coolant and the Air Locked Water Pump
Post 94 - Preliminary Starting Checks
Post 95 - Engine Running First Time Checks
Post 96 - Summary of 91' Reconditioning/Modifications

TIPS
Post 97 - Checking for abnormal noise and leaks LT5 engine
Post 98 - Number 8 Spark Plug Removal and Test Drive with Jeff Gordon
Post 99 - Adapting 91 IH to 90 Heads

TOOLS AND LT5 DIFFERENCES
Post 100 - ZR-1 and LT5 Tools
Post 101 - Differences between 90', 91' and 95' Crate Engine Plenums and IHs

SOLUTIONS
Post 102 - SOLUTIONS Overview and Ebay Searches
Post 103 - ZR1 General
Post 104 - ZR1 Electrical
Post 105 - ZR1 Engine
Post 106 - ZR1 Drive Train
Post 107 - Awesome
Post 108 - ZR1 Engine Fuel, Lubrication, Cooling, and Exhaust
Post 109 - ZR1 Specifications, Restorations, Air, Audio, Lifts
Post 110 - ZR1 Engine (LT5) Bolts and Hydraulics
Post 111 - Ebay Searches and Acronyms
Post 112 - Kudos

ADDITIONAL INFORMATION
Post 113 - Fuel Trim and Closed/Open Loop Operation
Post 114 - Kudos
Post 115 - Question Regarding Air Locked Water Pump
Post 116 - LT5 Air Locked Water Pump Simplified
Post 117 - LT5 PCV System

Miscellaneous Topics
Post 118 - Three Things To Do For A No Start
Post 119 - Last 1990 ZR-1 Sold (#3032)
Post 120 - The 180 deg versus the 160 deg thermostat or no thermostat
Post 121 - Finding A Vacuum Leak
Post 122 - Wilwood C5 Z06 Brake Conversion with Sawblades
Post 123 - Rebuilding Belt Tensioner
Post 124 - Checking Lubrication System
Post 125 - Making Your Own SS Hydraulic Lines
Post 126 - Getting The Air Out Of Coolant System
Post 127 - Replacing Bolts In Various Components and Use of Loctite
Post 128 - Activating Secondaries
Post 129 - Engine Has To Be Pulled To Time Camshafts
Post 130 - Cam Cover Filters

RESIZING PHOTOS AND THE NEW PHOTOBUCKET
Post 131 - Resizing Photos for Forum Posts and Creating Reference Links
Post 132 - New Photobucket s287.beta

Other Topics
Post 133 - Minimum Restoration of a 1990 ZR-1
Post 134 - Changing Engine Oil
Post 135 - Heater Hose Connection
Post 136 - Hose Clamps
Post 137 - Using Permatex and Headliner Glue
Post 138 - All I Know
Post 139 - Bose Speaker Amps
Post 140 - Cylinder Numbers and Firing Order

Questions and Answeres
Post 141 - Exhaust Hangers Question
Post 142 - Exhaust Hangers Defined
Post 144 - Replacing Coolant (LT5)
Post 145 - how often do you change your oil and other fluids

Last UPDATE of post 2 May, 2014

Last edited by Dynomite; 07-20-2014 at 05:18 PM.
Dynomite is offline   Reply With Quote
Old 02-20-2012, 11:44 PM   #3
Dynomite
Tech Contributor
Support Corvetteforum!
 
Dynomite's Avatar
 
Member Since: Sep 2009
Default LT5/ZR-1 Fluids

LT5/ZR-1 Fluids

HammerZR1 initiated this list of ZR1/LT5 Fluids and I added photos and additional information

ENGINE OIL (LT5) ................. TRANSMISSION OIL (ZF S6-40)..........DIFFERENTIAL OIL Limited slip

8.6 quarts (with filter change) .....4.4 pints - Castrol TWS 10W-60 ............3.2 pints - Mobil 1 - 75W-90 Gear Lube
Amsoil 10W-40 AMO Motor Oil ........................................ ..................or (Since you are ordering Amzoil anyway)
Bosch 3401 Filter........................................ ...................................3.2 pints - Amsoil - Severe Gear 75W-90
FRAM TG 3985 Filter........................................ ................................1 Bottle - Amsoil - Slip Lock Additive
Mobile 1 M1-207 Filter
Click the image to open in full size.........Click the image to open in full size..Click the image to open in full size.Click the image to open in full size.

Click the image to open in full size.
Click the image to open in full size.

For L98 engine use Mobile 1 Synthetic 5W-30

See Notes below regarding oil change intervals.

Amsoil SAE 10W-40
Castrol 10W-60

1. CAPACITIES
Engine (LT5), without filter...............7.6 quarts
Cooling System (ZR1), Initial Fill.......18.0 quarts
Manual Transmission (ZF S6-40)........4.4 pints
Differential (ZR1)............................3.2 pints

2. Fill and Drain Plug TORQUES
Oil Pan Drain Plug (14 mm Box wrench).....38 ft-lbs (5/8-18 Thread)

3. Manual Transmission Allen Plugs use 17 mm Allen Wrench (see Note D Below).
Fill Plug Allen wrench torque........26 ft-lbs
Drain Plug Allen wrench torque.....26 ft-lbs

4. Differential Fill Plug use 3/8 inch Allen Wrench
Click the image to open in full size.

5. Adding the Differential Oil Drain Plug to the ZR1 differential is a great idea.
The original ZR1 differential has no drain plug and the only way to remove differential fluid is to suck said fluid from the differential Allen Head Fill Plug. See Item #4 LT5 Added Systems

Install item # 584029 DIFFERENTIAL DRAIN PLUG KIT can be obtained from Corvette Central (includes 1/8 inch pipe tap, 11/32 drill bit) Differential Drain Plug Kit

Use 1/8 inch Aluminum allen head pipe plug you have to purchase separately 1/8 inch allen head pipe plugs

The kit provides a template that puts the hole just left of the center bolt in the valley of the differential. Just drill the hole gently and the differential oil and any shavings will drain completely. Then tap and install 1/8 inch Aluminum allen head pipe plug. Do not tap too deeply to make sure the pipe plug is tight and flush when finished.

Flush a bit with Mobile 1 75/90 gear lube after completing the tap before installing the 1/8 inch allen head pipe plug.

6. RADIATOR COOLANT
You want to only use the green coolant. They have it at Napa and it meets 1825M GM Spec.

For Zerex the first gallon is called Regular Green Coolant (GM 1825M), the second gallon is called Original Formula (GM 1825M). Zerex ZXRU1 is 50-50 and Zerex ZX001 is undiluted. The third gallon is NAPA coolant (GM 1825M).

Click the image to open in full size.ORClick the image to open in full size.ORClick the image to open in full size.

NAPA

7. OIL FILTER
I concur with HammerZR1 on all fluids cited above except I am using the Mobile 1 M1-207 oil filter.

8. BRAKE and CLUTCH FLUID
For brake and clutch fluid Dot 3 or Dot 4 (Prefer Dot 4).

Notes:
A. I change engine oil every 2,000 - 3,000 miles (5,000 miles if cross country driving).
B. ZF Doc says until someone invents a copper magnet, change the ZF S6-40 6-speed transmission oil at 10,000 - 12,000 mile intervals so as to minimize the amount of deposits of the suspended spent synchronizer material from collecting in critical component contact surface areas.
C. On previously owned cars/trucks, I change engine, transmission, differential fluid and coolant immediately upon purchase (extracting old brake/clutch fluid and cleaning brake/clutch fluid reservoirs). This assures proper fluid levels and reduces comtaminants accumulated over the previous life of the vehicle.


D. Be careful on inserting the 17 mm Allen Wrench into the Transmission Drain Plug. That Transmission Drain Plug often has road rash which prevents complete insertion of the 17 mm Allen. If not completely inserted you may strip the Allen part of the Drain Plug.
Snap-On 17mm Allen/3/8 socket

Dress up the Allen part of the Drain Plug and then tap the 17 mm Allen into the plug using a small hammer for full insertion before applying a torque on the 17 mm Allen Wrench to remove the Drain Plug. I use a box wrench that fits over the long end of the 17 mm Allen Wrench for additional leverage making sure you keep the 17 mm Allen Wrench fully inserted in the Drain Plug you are removing.

17 mm Allen Wrench
Click the image to open in full size.

E. Oil Viscosity.

Newer engines are built with tighter tolerances (use lighter oil).
High Mileage engines lose tolerances (use heavier oil).
Hot climates (hotter engines) thin oil (use heavier oil).
Cold climates (colder engines) thicken oil (use lighter oil).
Often starting colder engines (lighter oil).
Running engines for long hauls once started (use heavier oils).
Newer synthetic oils do not loose viscosity with use (use lighter oils).
In Fl or CA coastal (use heavier oils).
In SD winter ....definitley (use thinner oils).
Frequent oil changes (use thinner oils).
Infrequent oil changes (use heavier oils).

Last UPDATE of post 3 Nov, 2013

Last edited by Dynomite; 05-24-2014 at 08:13 PM.
Dynomite is offline   Reply With Quote
Old 02-20-2012, 11:44 PM   #4
Dynomite
Tech Contributor
Support Corvetteforum!
 
Dynomite's Avatar
 
Member Since: Sep 2009
Default General Bolt Length, Bolt Torque, Loctite, and Tools

General Bolt Length, Bolt Torque, Loctite, and Tools

1. In General bolt correct length checks can be determined by inserting the bolt (without turning) to the threaded portion of the receiver. For an 8 mm bolt, you should have approximately 7/16 to 1/2 inch of bolt showing (11 to 12.7 mm or 13 to 16 threads on a 1.25 t/mm bolt).

2. General Maximum Bolt Torque for steel bolts in aluminum if bolt torque is not specified.
89 in-lbs on 6 mm bolts
19 ft-lbs on 8 mm bolts
30 ft-lbs on 10 mm bolts
40 ft-lbs on 12 mm bolts

LT5 Bolt Charts with suggested bolt torque, loctite and antiseize application information are included above. The free chart from Jerry's Gaskets which provided the basic LT5 component bolt sizes has been considerably modified into two charts above. The charts have been organized by function.




3. Loctite.
Red loctite 262 on all bolts except oil pan bolts, plenum bolts or anything you think you might remove a couple times. Use Blue loctite 242 on those items (Except SS Plenum and SS Cam Cover Bolts). Use Loctite 565 on sensors, switches, fittings. Use anti-zieze on plugs and injector housing coolant pipe bolts (on any stainless steel bolts) :mrgreen:

Nothing on new head bolts. Actually I use antisieze on Header Bolts with Stage 8 Header Bolt Locks.
Always use Stage 8 Exhaust Header Bolts with locks (Headers Only). Do not have to torque the Header Bolts too much as the locks will assure the bolts do not loosen (torqued header bolts into aluminum which area gets very hot makes removal of bolts at any time difficult). You can also use an Allen wrench on Stage 8 Bolts.

Use a bit of antiseize on Header Bolts with the Stage 8 Locks. Also use a bit of antiseize on all spark plugs.



4. Hydraulic Fitting Size comparison.
AN (Army and Navy).....-2.........-3...........-4.........-5.........-6..........-8........-10.......-12
Tube OD (Hose ID).......1/8".......3/16"...... 1/4".......5/16".....3/8".......1/2"......5/8"......3/4"
SAE thread size...........5/16-24..3/8-24.....7/16-20..1/2-20...9/16-18..3/4-16...7/8-14..1-1/16-12
Pipe thread size (NPT)..............1/8-27.....1/4-18................3/8-18....1/2-14..............3/4-14
Straight Metric
Thread Fine .....Male Thread....... Male Thread ......Female Thread..... Female Thread
....................... O.D. mm ............O.D. inches ........I.D. mm............... I.D. inches
M12x1.5 ...........12.0................... 0.47................... 10.5 ......................0.41
M14x1.5........... 14.0................... 0.55 ...................12.5 ......................0.49
M16x1.5 ...........16.0 ...................0.63................... 14.50 ....................0.57
M18x1.5 ...........18.0................... 0.71................... 16.5 ......................0.65
M20x1.5 ...........20.0................... 0.78 ...................18.5 ......................0.73
M22x1.5 ...........22.0 ...................0.87................... 20.5 ......................0.81

5. Aluminum Stat-O-Seal washers with molded Buna-N inner seals are much more reliable than the more common steel stat-o-seals. If the rubber portion fails to make contact all around the port, the aluminum will act as a crush washer, providing a reliable metal to metal seal. Use them to seal screws, bolts or plumbing fittings. The Buna-N seal is resistant to petroleum fuels and oils. Pegasus Auto Racing



Stat-O-Seal Inside Diameters vs. Outside Diameters
ID Size...#6 (0.138")..#10 (3/16")...1/4"..5/16"...3/8"..7/16"..1/2"..9/16"..5/8"...3/4"...7/8"..1.00"
OD Size............ .38".......... .44".. .50".. .60"... .66".. .76"... .88"...1.06"..1.19".1.32"..1.51".1.76" [/SIZE][/FONT]

6. Pipe Plugs.
1/8 inch NPT Drill is 21/64 or 11/32 inch. Aluminum Allen Head 1/8 inch pipe plugs found here. Speedway Motors

7. Tools.
Often a 1/4 inch socket wrench and associated extensions/swivels are better to use in tight places than 3/8 inch sockets. I use a 3/8 inch and 1/4 inch universal (the "U" joint) in the first picture. I have a complete set of metric and SAE sockets in 3/8 inch and 1/4 inch sizes.


The wobble extensions are in second and third pictures and flex ratchet combination wrenches in fourth picture.

You will notice what allows the wobble in the third picture.

There are all sorts of swivels and swivel socket combinations you can get but these four tools/tool sets will get er done assuming you have a good 3/8 inch and 1/4 inch socket wrench and set of metric sockets with 3/8 inch and 1/4 inch adapters.

Oh...ya...you might need a good 1/4 inch and 3/8 inch torque wrench also. I like the ones that trip at your torque setting. And.....a good set of allen and torx T wrenches.
.


8. New Tools These from Harbour Freight......

a. 1/4 inch drive Torx #40 hardened steel for Plenum and Cam Cover Bolts (just long enough to reach between those two tight runners on the Plenum).

b. 14 inch long combination 1/4 inch and 3/8 inch drive Flex Head Socket wrench strong enough (even using the 1/4 inch end) to remove the hardest to remove Torx Cam Cover Bolts. The 14 inch leverage eliminates the need for a cheater bar on the typical socket wrench.





Last UPDATE of post 4 Apr, 2013

Last edited by Dynomite; 04-27-2014 at 08:59 AM.
Dynomite is offline   Reply With Quote
Old 02-20-2012, 11:44 PM   #5
Dynomite
Tech Contributor
Support Corvetteforum!
 
Dynomite's Avatar
 
Member Since: Sep 2009
Default Use of thread Lubricants, Loctite and Sealants

Use of thread Lubricants, Loctite and Sealants

1. General Use of Loctite including Permatex.

In General use Red loctite 262 on all bolts except oil pan bolts, plenum bolts or anything you think you might remove a couple times. Use Blue loctite 242 on those items (Except SS Plenum and SS Cam Cover Bolts). Use Loctite 518 on Cam Covers. Use Loctite 565 on sensors, switches, fittings. Use anti-zieze on plugs and injector housing coolant pipe bolts (on any stainless steel bolts).

a. Loctite 518.
Use Loctite 518 very thin coat on surface of cam covers. Do not coat Loctite 518 all the way to the edge of the journals (stay away 1/4 inch). Coat the grooves with Loctite 518 for the two camshaft rubber plugs on each end of each Cam Covers.

b. Permatex on gaskets associated with Oil and Coolant.
There are several opinions on this but I use a very light coat of Permatex 300 Form A Gasket on both surfaces of mating parts of all assemblies in contact with oil or water (water pump, oil pan and oil filter housing assemblies). I always use a thin coat of Permatex on the oil pan drain plug and differential drain plug also. This not only helps seal the plugs but also acts as a thread locker (A little less bolt torque with a good sealant). Tighten just tight enough to not leak on all drain plugs.

Click the image to open in full size.

2. Use of Anti-Sieze and Gasket Sealants

I will use anti-sieze on stainless steel bolts, spark plugs, and header bolts (Permatex Anti-Sieze 133A). On the transmission (differential and engine) fill & drain plugs and water pump I use Permatex 300 Form-A-Gasket. On Cam Covers and Cam Cover rubber end seals use a thin coat of Loctite 518.

Click the image to open in full size.Click the image to open in full size.Click the image to open in full size.

3. Bolt Torque Theory

When a sufficient load is applied to a metal or other structural material, it will cause the material to change shape. This change in shape is called deformation. A temporary shape change that is self-reversing after the force is removed, so that the object returns to its original shape, is called elastic deformation. In other words, elastic deformation is a change in shape of a material at low stress that is recoverable after the stress is removed. This type of deformation involves stretching of the bonds, but the atoms do not slip past each other. This applies to head bolts.

When the stress is sufficient to permanently deform the metal, it is called plastic deformation. This applies to camshaft sprocket bolts.

Now having said that.....what is the relationship between bolt torque, thread lubrication, and bolt tension?

The preload on a bolt, when determined via the torque method, can be off by as much as 25% even with proper precautions being taken especially between lubricated and dry bolt threads.

The purpose of bolt thread lubrication is to ensure that the applied torque deforms the bolt along its axis (stretch) instead of around its diameter (twist).

I have seen a statement that the standard for thread lubrication is a light coat of oil of about 10W viscosity. A thin coat of most engine oils does just fine. The idea is to allow the threads to move against one another and light oil does that reliably. Of course, this standard assumes that the threads of the bolt and nut, or case, or whatever, have reasonably smooth finishes. Exotic or extreme-pressure lubricants such as gear oils or moly pastes are mostly a waste of time and can actually be harmful if they reduce friction too much.

I on the other hand for oil pan bolts and other bolts on engine components such as the water pump, front engine cover (especially threaded into aluminum) use blue thread locker which by itself is a bolt lubricant. I clean and dry the bolt hole and bolt threads (I use a fine wire wheel on bolt threads including head bolts) with gasoline on a que tip for example cleaning out debree and oil films as much as possible. This applies to head bolt threaded holes as well.

You can reuse head bolts but I prefer to use new head bolts since I have no clue how they were first installed. It also depends on how hard they were to remove.

4. The use of Stainless Steel Bolts

There are only a few of us that use stainless bolts (and then only on cam covers and plenum). On the plenum if they are stainless bolts, I expect to be taking that off more often than not anyway. Prolly same with cam covers stainless bolts but less often.

On Cam Covers and Injector Housing Coolant Manifolds when SS Bolts are used I now use no loctite and no Antisieze using the Aluminum Stat-O-Seal washers. The Stat-O-Seal Aluminum washers with molded Buna-N inner seals are much more reliable than the more common steel stat-o-seals. The Stat-O-Seal Aluminum Washers act as a bolt sealing and locking mechanism. I use no Loctite or Antiseize on the Plenum SS bolts as the Plenum may be removed from time to time.

5. Use of Stat-O-Seal Washers

Using Aluminum Stat-O-Seal Washers..........if the rubber portion fails to make contact all around the port, the aluminum will act as a crush washer, providing a reliable metal to metal seal. Use them to seal screws, bolts or plumbing fittings. The Buna-N seal is resistant to petroleum fuels and oils. Pegasus Auto Racing

Click the image to open in full size.

6. Thread Galling and Corrosion

Thread galling seems to be the most prevalent with fasteners made of stainless steel, aluminum, titanium, and other alloys which self-generate an oxide surface film for corrosion protection. During fastener tightening (and loosening), as pressure builds between the contacting and sliding thread surfaces, protective oxides are broken, possibly wiped off, and interface metal high points shear or lock together. This cumulative clogging-shearing-locking action causes increasing adhesion. In the extreme, galling leads to seizing - the actual freezing together of the threads".

The basic corrosion resistance of stainless steel occurs because of its ability to form a protective coating on the metal surface. This coating is a "passive" film which resists further "oxidation" or rusting. The formation of this film is instantaneous in an oxidizing atmosphere such as air, water, or other fluids that contain oxygen. Unlike aluminum or silver this passive film is invisible in stainless steel. It's created when oxygen combines with the chrome in the stainless to form chrome oxide which is more commonly called "ceramic".

7. Summary of 262, 242, and 518 Loctite

Red loctite 262 on all (non stainless steel) bolts except oil pan bolts, plenum bolts, water pump bolts or anything you think you might remove a couple times. Blue loctite 242 on those items (Except SS Plenum and SS Cam Cover Bolts). Loctite 565 on sensors, switches, fittings.

LOCTITE 262 is designed for the permanent locking and sealing of threaded fasteners. The product cures when confined in the absence of air between close fitting metal surfaces and prevents loosening and leakage from shock and vibration. Typical applications include the locking and sealing of large bolts and studs (up to M25 ). The thixotropic nature of LOCTITE 262 reduces the migration of liquid product after application to the substrate.

LOCTITE 242 is designed for the locking and sealing ofthreaded fasteners which require normal disassembly with standard hand tools. The product cures when confined in the absence of air between close fitting metal surfaces and prevents loosening and leakage from shock and vibration. Suitable for applications on less active substrates such as plated surfaces, where disassembly with hand tools is required for servicing.

LOCTITE 518 gasket maker is a non-corrosive, anaerobic sealer designed primarily for use on aluminum, iron, and steel flanged mating surfaces. It's ideal for on-the-spot emergency repairs, or when a conventional gasket is out-of-stock. 518 gasket maker fills gaps of up to 0.050 in. and forms a flexible, solvent-resistant seal that will not tear or decay. Parts will disassemble easily even after extended service, and old gasket material can be removed with a putty knife.

LOCTITE 565 is designed for the locking and sealing of metal pipes and fittings. The product cures when confined in the absence of air between close fitting metal surfaces and prevents loosening and leakage from shock and vibration.

Click the image to open in full size.Click the image to open in full size.Click the image to open in full size.

Last UPDATE of post 5 Feb, 2013

Last edited by Dynomite; 05-13-2014 at 08:49 AM.
Dynomite is offline   Reply With Quote
Old 02-20-2012, 11:45 PM   #6
Dynomite
Tech Contributor
Support Corvetteforum!
 
Dynomite's Avatar
 
Member Since: Sep 2009
Default Service Manual Supplement, Secondary Diagnostics. Sensors, and Prom Codes

Service Manual Supplement, Secondary Diagnostics, Sensors and Prom Codes

1. Service Manual Supplement.
This Service Manual Supplement is limited to detail LT5 engine pictures, bolt torque, Sealant recommendation, and sequence of disassembly and assembly engine only. No electrical, diagnostics or fault finding (60 pages). Also included is Oil capacity, Engine Specifications, and Special Tools.



2. Checking Injector Resistance without removing Plenum.
I checked my primary injector resistances without removing Plenum. I disconnected my battery and connected Inj-1 fuse side toward front of my 1991 ZR1 through digital ohm meter to ECM connector A (drivers side most left connector) A8, A3, A2, A7, A1, A12, A13, and A18. I was looking for 12.5 to 14 ohms on primary and secondary injectors.



3. Checking Secondary Operation without removing Plenum.
Check Secondary Operation by grounding pin C17 of ECM with key on. My screw driver is now pointing at the location of pin C17 on the ECM (that wire is pink with black strip on my 1991).



4. ZR1 Sensors.


5. ZR1 Electronic Automatic AC .

The AC parameters can be viewed by pressing and holding the UP and DOWN Fan Buttons untill a -00- appears.
Then press the UP button untill you get to an - 05 (Battery Charge) or a - 16 (Coolant Temperature). Then press center Fan Button to view the Battery Charge (see below) or Coolant Temperature (Deg C). On a Standard 1990 Corvette (L98) the Coolant Temperature is scan UP to - 12 then press center Fan Button.

a. Coolant Temperature.
Coolant Temperature - 16 indicating you are .............Coolant Temperature is 83 deg C or 181.4 deg F
at Coolant Temperature (Now Press Fan)



b. The Coolant Temperature Calculation Trick.
Deg Centigrade which you observe as 83 deg can be converted to F deg:
(83 x 9/5) +32 = 181.4 deg F

c. Battery Charge.
A bit more complicated for Battery Charge...................Air is OFF in this case
Battery Charge - 05 (Now Press Fan)..........................197 indicating 14.408 volts (see b. below)


Battery Charge - 05 (Now Press Fan)
at Battery Charge -105 indicating 13.742 volts (see B below)
Air is ON in this case



d. The Battery Charge Calculations Tricks
With AC OFF we see 197. The Calculation for a positive number is:
((197/255) x 7 volts) +9 volts = 14.408 volts (the constant is 255 for a positive observed number)

With AC ON we see -105. The Calculation for a negative number is:
(105/155) x 7 volts) +9 volts = 13.742 volts (the constant is 155 for a negative observed number)

6. Prom Code Chart.



Last UPDATE of post 6 Sep, 2013

Last edited by Dynomite; 04-26-2014 at 06:27 PM.
Dynomite is offline   Reply With Quote
Old 02-20-2012, 11:45 PM   #7
Dynomite
Tech Contributor
Support Corvetteforum!
 
Dynomite's Avatar
 
Member Since: Sep 2009
Default LT5 Thermostats

LT5 Thermostats

1. LT5 Thermostat operation

The LT5 thermostat sits in two cavities and is located on the outlet side of the radiator. On one end of the thermostat is the first valve [pressure relief) that expands and opens to excessive radiator pressure (but only relative pressure over and above that normal thermal expansion radiator pressure). That valve is in the first cavity which is exposed to coolant outlet flow. In the second cavity is the second thermostat valve (temperature relief) which controls coolant inlet flow depending on engine temperature.

GM found at high rpm and high coolant flow, excessive pressure in the radiator, due to it's restriction, would blow the rubber seals between the side tanks and the core. GM did not want to design a specific LT5 radiator, so the solution was the radiator bypass which opens when the pressure differential across the radiator reaches a certain level. This bypass valve is part of the thermostat and, when open, allows coolant to recirculate within the engine.

LT5 Coolant System Discussion

ZR1 provided this photo in the LT5 Coolant System Discussion

Click the image to open in full size.
Click the image to open in full size.

2. LT5 Thermostats

To assure I have the correct thermostat, I use the 180 deg Thermostat sold by Marc Haibeck.
Defective Stant Thermostats by Marc Haibeck

....190 deg....................180 deg.............165 deg...... ......190 deg....................180 deg..........165 deg
Click the image to open in full size.Click the image to open in full size.

3. Replacing Thermostat or Lower Radiator Hose

I would remove the two 13mm bolts attaching the thermostat housing to the frame. Once you remove those two bolts it becomes intuitively obvious the rest of the process but just for my own information some steps are provided

1. Remove all three bolts from the housing (including the two 13mm bolts attaching the thermostat housing to the frame) and take the thermostat housing apart.
2. You can then remove and check the thermostat condition and remove the thermostat housing from the hose.
3. There is a clamp on the lower coolant horizontal pipe attached to half of the thermostat housing that you can also remove to make moving the housing easier.
4. When installing the housing with thermostat in place, put the housing together by hand and then install the short radiator hose. Or I think you can install the short radiator hose and then open housing halves to insert the thermostat with rubber gasket.
5. Last, insert the two bolts holding the housing to the frame as well as the third lower bolt into the housing halves. Do this while holding the thermostat in place inside the housing with its rubber gasket.
6. Keep the two thermostat housing halves tight together by hand as you place the two bolts into the frame so the thermostat rubber gasket is not moved out of place. No other gasket is required.
7. Do NOT over tighten the thermostat housing bolts as it is not necessary for a complete coolant seal with the thermostat rubber gasket properly in place.
8. Tighten the lower radiator hose clamps such that they are accessable if you have to repeat this process. Radiator Hose Clamps Orientation
9. Before you completely fill the radiator with antifreeze coolant, first put a gallon of distilled water in the drivers side coolant hose and check for any leaks in and around the thermostat housing. Just In Case

If you do not remove the two 13mm bolts connecting the thermostat housing to the frame and move/take apart the housing, it is a bear to remove that lower radiator hose for sure.

4. Getting the air out of the Coolant flow:
It is assumed that the air gets pushed out of the injector housing coolant manifolds on each side (equally) since they are higher than the radiator coolant line going back to the coolant expansion tank on passenger side (the highest point in the coolant system). This is assumed for a system in which the TB/Plenum coolant paths have been blocked off.

It appears that the water pump pressure into each cylinder block (right and left) would be equal since the coolant flow is separated on the face of the front cover where the water pump is mounted. There are two holes of equal size that go into the front of each cylinder block (right and left) from the front cover. In other words, the coolant is not pushed from the water pump into a single flow after which the flow is divided but rather the coolant flow is divided at the impeller of the water pump.

If the water pump can pump 100 GPM (385 cubic inches/sec) through two ports (lets assume 1-1/4 inch diameter or 1.23 square inches cross section each port), the coolant velocity would be 156 in/sec or 13 ft/sec in each port. That is intuitively enough flow to prevent a bubble of air going the other way in that flow assuring all air is pushed out of the system.

It is assumed the water pump is NOT air locked which is the first thing to check for when refilling with coolant Filling With Coolant and the Air Locked Water Pump

5. Thermostat bypass:
The radiator Bypass Hose (see above coolant flow diagram) contains the hot coolant coming from the passenger side injector housing as stated below in red. The other companion hose (Radiator Inlet Hose) coming from the drivers side injector housings goes to the top (return line) of the radiator.

Both hoses are connected together at the top front of engine so the coolant flow from each injector housing may comingle with either the radiator bypass or radiator inlet.

6. Coolant refilling:
As an aside, it appears that coolant refilling could be accomplished by first separating coolant hoses (each side) from both of the injector housing coolant manifolds. Remove cap from coolant expansion tank. Fill one hose (will fill radiator and will fill other side coolant hose to same level) with coolant. This should also fill other side of thermostat including the water pump and injector housings with coolant (watch for coolant coming out of either side injector housing coolant manifold). Reattach coolant hoses to injector housing coolant manifolds. Lastly, fill coolant expansion tank and replace cap. See Filling With Coolant and the Air Locked Water Pump

7. Now if you really want to keep the LT5 cool......install a Ron Davis Radiator.

1989-1996 C4 Type V8 All Part No. 1-16CV8996

-Rated HP: 800*
-Manual transmission
-Core is thicker than factory unit, shroud must be trimmed.

Click the image to open in full size.


Last UPDATE of post 7 Feb, 2013

Last edited by Dynomite; 09-12-2013 at 05:37 PM.
Dynomite is offline   Reply With Quote
Old 02-20-2012, 11:45 PM   #8
Dynomite
Tech Contributor
Support Corvetteforum!
 
Dynomite's Avatar
 
Member Since: Sep 2009
Default LT5 Radiator and Initial Coolant Fill Tricks

LT5 Radiator and Initial Coolant Fill Tricks

1. Ron Davis Radiator w/o transmission cooling

Coolant temperature stays at a constant 180 deg (70 deg ambient) with 180 deg thermostat.*
a. 1989-1996 C4 Type V8 All Part No. 1-16CV8996
b. Rated 800 Hp
c. Manual transmission

Click the image to open in full size.

d. For the Ron Davis radiator the fan shroud inside baffles have to be cut back 5/8 inch so there is not contact with the fins of the radiator. Use a small cut off grinder for that task.
e. I cut the tab on the passenger side of the fiberglass radiator housing (the single tab with larger bolt hole that interferes the most with the oil cooler hoses). The fiberglass radiator housing then slipped on easily without further modifications.
f. Use a Radiator Comb to straighten out any bent fins.
g. Replaced Ron Davis Radiator Nylon Drain Plug with new radiator drain Brass JIC fitting with cap.

Click the image to open in full size.Click the image to open in full size.

2. When installing SAMCO hoses, set the clamps so the screws are excessable after everything else is installed.
a. The bottom hose clamp screw on the water pump facing down so it can be reached from underneath with a long flat head screw driver.
b. That lower clamp (water pump) has to also be positioned so the screw part does not interfere with the belt tensioner.
c. The top main hose clamp between water pump and thermostat housing (Top) clamp screw facing to rear of engine.
d. This allows you to use a 7 mm box wrench to tighten the hose clamp from above. Make sure this TOP main Water Pump Hose does not touch the Oil Cooler Lines between the Oil Cooler and Oil Filter Housing.
e. Installing SAMCO hoses is kind of tough. I always used bit of Permatex on the hose fittings and in this case coated the inside of the hose a bit with Permatex also which helped start the hose on the various fittings. Trouble is that using Permatex makes the slip on easy but also slip off easy under pressure. So...USE NOTHING ON SAMCO HOSE.
f. I also use a bit of permatex gasket sealer on all mating surfaces (including those with gaskets) having to do with coolant (water pump, thermostat housing, all coolant hoses, and injector housing water manifolds).......no coolant leaks.
g. Use ONLY the SAMCO Hose Clamps with rounded edges that DO NOT cut into the SAMCO Hose when tightened.
h. Install all hose clamps on SAMCO hose as close to the receiving coolant pipe hose clamp retaining ring as possible. The hose clamp retaining ring is the larger diameter ring on all receiving coolant pipes.

Click the image to open in full size.Click the image to open in full size.

3. Filling with coolant Tricks
See (Filling With Coolant and the Air Locked Water Pump) for Detailed New Coolant Filling Trick.

See LT5 Air Locked Water Pump Simplified for the Simplified Discussion regarding The Air Locked Water Pump.

Click the image to open in full size.

Last UPDATE of post 8 Nov, 2013

Last edited by Dynomite; 11-27-2013 at 11:46 AM.
Dynomite is offline   Reply With Quote
Old 02-20-2012, 11:45 PM   #9
Dynomite
Tech Contributor
Support Corvetteforum!
 
Dynomite's Avatar
 
Member Since: Sep 2009
Default Using HVAC Display for Engine Coolant Temperature

Using HVAC Display for Engine Coolant Temperature
This post applies to both C4 (L98) and (LT5) engines.

ghlkal brought my attention to this great tip

Using the HVAC Display parameter #16 digital readout for continous Engine Coolant Temperature in deg C where deg F=((9/5)(deg C) +32) can be accomplished by pressing the two Fan Buttons.

Press both Fan Up and Fan Down together waiting 3 seconds to enter HVAC diagnostics. Then press Fan Up to parameter #16 and then press Auto (between the two Fan Buttons) to read the Engine Coolant Temperature in deg C which Engine Coolant Temperature will be a real time continous reading.

The Engine Coolant Temperature is exhibited in real time continuously untill you exit the HVAC diagnostics or select another parameter by pressing Fan Up or Fan Down (engine running or not and idling in neutral or driving down the road). I shoot for 94 deg C to 104 deg C (200 deg F to 220 deg F) on a hot 100 deg F day at highway speeds with AC set at 72 deg (using a 180 deg thermostat and Fans On 205 deg F Fans Off 200 deg F with Marc Haibeck Chip ).

You can now compare Engine Coolant Temperature gauge reading to Engine Coolant Temperature HVAC digital read out. You can compare as a check of the Engine Coolant temperature gauge and two separate Coolant Temperature Sensors located essentially in the same area of the engine (drivers side inside IH under Plenum).

The Temperature Sensor (two pin connector) that controls the cooling fans also provides the information for the HVAC digital readout. The Temperature Gauge is controled by the adjacent Temperature Sensor (button terminal).

Photo provided by Jerry of Jerry's Gaskets.

Click the image to open in full size.

2. Effectiveness of LT5 Radiators/Cooling Fan Systems

The Bottom Line Question for any discussion regarding Effectiveness of LT5 Radiators/Cooling Fan Systems is How do the Radiator/Fans Cool the LT5 Engine with AC On at 100 deg F Ambient Temperatures while idling in traffic.

Let us assume for simplicity that LT5 engine cooling is about the Radiator Air Flow and Radiator Coolant flow (as 5ABI VT and Goldcylon suggests). Lets further assume that the engine sensors, heat generation, spark advance, compression, load are identical between engines at a certain engine speed and ZR-1 speed in other words nothing to consider other than the air flow, coolant flow, and coolant temperature from the HVAC Display (AC ON and AC OFF).

I am going to do some testing to verify exactly how two ZR-1s here in CA (90' with stock radiator and 91' with Ron Davis radiator) behave at 100 deg ambient temperatures (stop and go and on freeway at various speeds). I will determine exactly what the coolant temperatures are at 60 mph and 2,000 engine rpm in 5th Gear (including the worst condition idling with ZR-1 not moving). The Conditions I have are a 180 deg F Thermostat and Fans ON at 205 deg F and OFF at 200 deg F running on 91 Octane Fuel (Marc Haibeck Chip).

I am thinking ALL radiators function well at ambient temperatures around 90 deg F and lower.....it is the 100 deg F ambient temperatures that are of issue.

Using HVAC Display for Engine Coolant Temperature
Water Pump, Coolant Temperatures, and Coolant
Coolant Characteristics (Mix, Pressure, Elevation)

A. Experiment Number 1
1990 Fans On 205 deg F Fans Off 200 deg F
Stock Radiator
100 deg F Ambient
at least 50% Coolant Mix

AC On 72 deg AC Fan 7
Cruise 60 mph 5th HVAC temp 220 deg F (after exceeding that temperature during the idle test)
(this was interesting because once the temperature came down to 204 deg F with AC Off the temperature did not rise above 205 deg F with AC On)
AC Off 60 mph 5th HVAC temp 204 deg F and dropping slowly
Fans are Controlling Coolant Temperatures when AC is Off

AC On 72 deg AC Fan 7
Idle (not moving) HVAC 235 deg F and climbing (idle for 5 minutes)
Coolant Temperature would keep climbing if I did not turn AC Off within a few minutes

AC Off
Idle (not moving) HVAC 230 deg F and dropping slowly
Coolant Temperature CAN BE CONTROLLED by Turning AC Off

B. Experiment Number 2
1990 Fans On 205 deg F Fans Off 200 deg F
Stock Radiator
90 deg F Ambient
at least 50% Coolant Mix

AC On 72 deg AC Fan 7
Cruise 60 mph 5th HVAC temp 205 deg F

AC On 72 deg AC Fan 7
Idle (not moving) HVAC 228 deg F (idle for 10 minutes)
Coolant Temperature is stable at 228 deg F with AC On with Ambient Temperature 90 deg F

In Summary From this experiment at 100 deg F and 90 deg F Ambient Temperatures the 1990 ZR-1 with stock radiator and Marc Haibeck Chip controlling the fans On at 205 deg F and Off at 200 deg F the following results were obtained.........

1. The Fan thermal switching control the Coolant Temperature (100 deg Ambient) when moving with AC Off (With AC On the Fans are always On).

2. At 100 deg Ambient Temperatures the 180 deg thermostat is not a player staying open under ALL conditions.

3. At 100 deg Ambient Temperatures the Coolant System FAILS when idling in traffic or at stop lights for over 5 minutes with AC On.

4. Excessive Coolant Temperature at Idle with AC On can easily be controlled by turning the AC Off.

5. It also was determined that if the Ambient Temperature dropped to 90 deg F the 1990 ZR-1 can idle in traffic at a stop indefinitely with AC On.

(For those not having the Marc Haibeck Chip the Fan Controlled Coolant Temperatures in this experiment would be 234 deg F)
.

Next the 1991 ZR-1 with Ron Davis Radiator
C. Experiment Number 3
1990 Fans On 205 deg F Fans Off 200 deg F
Ron Davis Radiator
100 deg F Ambient
at least 50% Coolant Mix



B. Experiment Number 4
1990 Fans On 205 deg F Fans Off 200 deg F
Ron Davis Radiator
90 deg F Ambient
at least 50% Coolant Mix

Notes:

1. When testing Coolant Temperatures at Idle, then increasing the rpm, the Coolant Temperatures rose.
This indicates the higher Coolant Temperatures at Idle are probably not caused by low pump flow.
2. The Water Pump Flow at 800 rpm is 15 gpm. The Water Pump actually gets more efficient as the rpm increases from idle to 2,000 rpm.
As Per Marc Haibeck graph provided to the ZR-1 Net email list by Graham Behan about ten years ago, the water pump flow rate is:
15 gpm at 800 rpm
18 gpm at 1,000 rpm,
44 gpm at 2,000 rpm,
65 gpm at 3,000 rpm,
90 gpm at 4.000 rpm,
120 gpm at 5,000 rpm at which time cavitation is starting.
3. The Dual Thermostat Bypass pressure is apparently 5 psi and block resistance at 100 gpm is approximately 20 psi. I am not sure what the radiator Head Loss is at various flow rates but definitely depends on the radiator type.
4. It would seem that the Coolant Pressure Relief Cap on top of the Coolant Reservoir in front of passenger side set at 15 psi would assure the radiator maximum pressure would be 15 psi plus the Bypass Pressure of 5 psi or 20 psi.

Last UPDATE of post 9 July, 2014

Last edited by Dynomite; 07-26-2014 at 11:24 PM.
Dynomite is offline   Reply With Quote
Old 02-20-2012, 11:45 PM   #10
Dynomite
Tech Contributor
Support Corvetteforum!
 
Dynomite's Avatar
 
Member Since: Sep 2009
Default Water Pump, Coolant Temperatures, and Coolant

Water Pump, Coolant Temperatures, and Coolant

Just when you think you have covered all technical issues. When I say "Water" I am talking about an "engine coolant mix" of your choice (Regular Green Coolant (GM 1825M) or Original Formula (GM 1825M)).

1. Water Pump Failures

a. Failed gasket causing water leaks.
* Water leaks from water pump gasket down on power steering unit or harmonic balancer.
* Water can be found on floor beneath front of engine.

b. Failed water pump bearing.
* Water pump pulley looks crooked.
* Squeeling or other noise from water pump area with engine running.
* Water pump pulley is loose or play can be felt by hand.

c. Water pump impeller spins freely on water pump shaft.
* Engine temp increases considerably.

Click the image to open in full size.

2. Installing a Water Pump

It is difficult to install a water pump incorrectly. This water pump had no leaks in gasket and was free spinning by hand immediately after installation as a check. The water pump impeller was firmly attached to the shaft when installed.

If you drop everything on the floor after all that taking account of where the bolts go. Not to worry....

With the water pump in position on the front engine face, just insert the bolt into the water pump housing to the threaded area on the front engine face. Make sure you have about 3/8 inch (or a bit more or less) showing between the bolt head and water pump surface.

As you remove the water pump bolts (during water pump removal) you can confirm that bolt head to water pump surface distance. Some of those "water pump" bolts hold the front cover as well as the water pump to the engine block

All bolts should be about the same in this regard (bolt head to water pump surface distance). If you have more or less space between bolt head and water pump surface as the bolt begins to thread, the bolt is in wrong place.

Click the image to open in full size.

I think this was an aftermarket water pump and the Solution to such potential disasters is to buy a new AC Delco water pump.

I use a very thin coat of Permatex 300 Form A Gasket on each side of the Water Pump gasket and IH coolant manifold gaskets before installing. I use a drop of Blue Loctite 242 on all water pump bolts and torque all water pump bolts 18 ft-lbs. NO LEAKS

Click the image to open in full size.Click the image to open in full size.

3. Coolant Temperatures

Just got back with my 90' L98 climbing Grapevine on I-5 in 110 deg temps. I counted no less than 20 cars/trucks stopped alongside the road with hoods up (you know what that means)

My temps got up to 225 deg F climbing to the top with Air on. With Air off the temps dropped a few degrees. Just as a point of reference I was using HVAC for digital readout.

The radiator in my L98 is stock but in my 91' Z I have a Ron Davis Radiator.

Did some testing yesturday (91' ZR1 with LT5) in stop and go traffic at 105 Deg F (or higher) ambient temperatures....With Air on I approach 110 deg C Coolant Temperatures and with air off back down to 105 deg C. I ended up turning engine off at long stop lights. Cruising 25 mph more or less ....Coolant Temperatures with Air On stayed 105 deg C or less and once on the road cruising at 50 mph Coolant temperatures stayed below 100 deg C. This is with Ron Davis Radiator and Stock Fans coming on at 205 and both off at 200 degs (Marcs Custom Chips work perfectly).

I used HVAC Display to check continous digital Coolant Temperatures.

I would suggest that we have reached the limits of the cooling system and in particular, the limit is air flow through the radiator and around the engine (Fans). I would suggest if one really wanted to solve this issue, install higher flow rate fans. But then again we are talking extremes in Ambient Temperatures (100 deg and above or maybe mid 90s and above).

Since I essentially have the same results running a 90' (L98) and a 91' (LT5) in HOT ambient Temperatures hill climbing as well as in Stop and Go Traffic.......I would suggest a limit in the coolant systems has been reached.

Reaching Limits in Engine Cooling systems was not Abnormal climbing the Grapevine in temps over 105 deg F as many of those cars/trucks parked alongside the road with hoods up were relatively NEW cars and trucks.

4. Marc Haibeck Discussion of Voltage Effects on Engine Cooling

I asked Marc some questions regarding Cooling Fans and Cooling Fans operations with some very interesting facts/Observations presented by Marc. Marc gave me permission to post that information here.....thank you Marc

"The same OE fan is used on all '90 to '94 Corvettes regardless of the engine type. They run at high speed all of the time.

'90 - '92 Primary on at 226 degs. F, off at 216. Secondary on at 234 degs. F, off at 225.
'93 - '95 Primary on at 222 degs. F, off at 212. Secondary on at 230 degs. F, off at 221.
'95 ZR-1 has three fan relays which is different than the earlier years. On the '95 both fans are turned on at half speed at 222 degs. Both fans go on at full speed at 230 degs.

Many other GM cars have the fans wired for high or low speed. The fans are single speed but the relays turn on both fans wired in series for low speed. Then each fan gets power at six volts. For high speed the relays connect direct 12 volts to each fan.

I recently observed that the alternator output plays a significant roll in ZR-1 fan cooling. A typical alternator sets the system voltage between 13.5 and 14.5 volts when the ambient temperature is at about 90 degs. F.

In my opinion the cars with the alternators at the higher end of the normal range at 14.5 volts run a few degrees cooler. With the AC on there is also little more air flow from the interior vents for better AC performance. If fan engine cooling is a problem, consider the system voltage as a factor."

From this I would say also Battery Condition is a factor on maintaining the higher voltage for optimum Radiator Cooling Fans operations.

5. Coolant Selection SUMMARY

You want to only use the green coolant. They have it at Napa and it meets 1825M GM Spec.

For Zerex the first gallon is called Regular Green Coolant (GM 1825M), the second gallon is called Original Formula (GM 1825M). Zerex ZXRU1 is 50-50 and Zerex ZX001 is undiluted. The third gallon is NAPA coolant (GM 1825M).

Click the image to open in full size.ORClick the image to open in full size.ORClick the image to open in full size.

NAPA

5. What is a Failing Coolant System.

85 C (185 deg F) is about when your thermostat is fully open (180 deg thermostat). The 96 C is when your fans prolly come on and 93 C is when your fans prolly turn off (Marc Haibeck Chip). Marc typically has BOTH Fans turn ON at 205 deg F and OFF at 200 deg F.

Now so far your testing at cruising (Outside Air Temperature right around 80 deg F) is not too significant. It is the idling at a stop light for several minutes (Outside Air Temperature 100 deg F) that is the BIG TEST which is FAILED by ALL stock Radiators cooling the LT5 (Especially with AC ON).

This Ambient Air Condition (100 deg F) and operational Condition (idling at a stop light) challenges the Most Efficient Radiators (Ron Davis, Dewitt, and even Fluidyne).

When I say FAILED....I am talking Coolant Temperatures greater than 110 C to 112 C (230 deg F to 234 deg F). It is interesting that the 234 deg F is when both fans come on (Stock Engine).

I am suggesting that Coolant Temperature of 234 deg F is NOT failing when Outside Air Temperatures are 100 deg F and you are idling at a stop light for several minutes.

I am also suggesting that without Marc's chip and with a stock radiator the Coolant Temperatures WILL EXCEED 234 deg F (on a 100 deg F day with AC ON idling at a stop light) which I would say is a failing Coolant System.

Last UPDATE of post 10 July, 2014

Last edited by Dynomite; 07-25-2014 at 03:05 PM.
Dynomite is offline   Reply With Quote
Old 02-20-2012, 11:46 PM   #11
Dynomite
Tech Contributor
Support Corvetteforum!
 
Dynomite's Avatar
 
Member Since: Sep 2009
Default Radiator Debris Screens

Radiator Debris Screens

91' ZR1 (LT5), 90' ZR1 (LT5), and 90' Corvette (L98).

Use 1/8 inch steel pop rivets with washers back side of Air Deflector and on front of screen (approximately 5/16 inch mesh). Drill 1/8 inch holes in the rubberized air deflector. Use cable ties on top side of screen (cable ties not required on 90' Debris Screen installation).

91' ZR1 (LT5) Slot in Debris Screen Required for Air Deflector Brace.


90' Corvette (L98)


90' ZR1 (LT5)


In the 90' Debris Screen installation you will see a slot in the Air Deflector for the Tow Bar when needed (see item #2 and #3) Lifting and Towing the ZR-1

The 90' Debris Screen (unlike the 91' Debris Screen) does not require a slot for the Air Deflector Brace.

The 91' Air Deflector has also been modified with Tow Bar slot but not shown in above 91' Debris Screen installation.

Last UPDATE of post 11 May, 2012

Last edited by Dynomite; 06-02-2014 at 11:27 AM.
Dynomite is offline   Reply With Quote
Old 02-20-2012, 11:46 PM   #12
Dynomite
Tech Contributor
Support Corvetteforum!
 
Dynomite's Avatar
 
Member Since: Sep 2009
Default Getting The Air Out of the Coolant System

Getting The Air Out of the Coolant System

Eliminating the TB and Plenum coolant flow paths leaves you with this coolant flow shown in the diagram. I would assume water pressure/flow out of each injector housing (equal flow) into the injector housing coolant manifolds would push most of the air out of those manifolds and into the radiator which has a return line to the pressurized coolant expansion tank on passenger side near firewall (which IS the high point in the system).

Click the image to open in full size.

Getting the air out of the Coolant flow

It is assumed the air gets pushed out of the injector housing coolant manifolds on each side (equally) since they are higher than the radiator coolant line going back to the coolant expansion tank on passenger side (the highest point in the coolant system).

It appears that the water pump pressure and resulting coolant fow into each cylinder block (right and left) would be equal since the coolant flow is separated equally on the face of the front cover where the water pump is mounted. There are two holes of equal size that go into the front of each cylinder block (right and left) from the front cover. In other words, the coolant is not pushed from the water pump into a single flow after which the flow is divided but rather the coolant flow is divided at the impeller of the water pump.

Click the image to open in full size.

If the water pump can pump 100 GPM (385 cubic inches/sec) through two ports (lets assume 1-1/4 inch diameter or 1.23 square inches cross section each port), the coolant velocity would be 156 in/sec or 13 ft/sec in each port. That is intuitively enough flow to prevent a bubble of air going the other way in that flow assuring all air is pushed out of the system.

It is assumed the water pump is NOT air locked which is the first thing to check for when refilling with coolant. See Filling With Coolant and the Air Locked Water Pump

See Getting the Air Out Simplified TIPS for the Simplified Discussion regarding The Air Locked Water Pump.

Thermostat bypass

The radiator Bypass Hose (see above coolant flow diagram) contains the hot coolant coming from the passenger side injector housing as stated below in red. The other companion hose (Radiator Inlet Hose) coming from the drivers side injector housings goes to the top (return line) of the radiator.

Both hoses are connected together at the top front of engine so the coolant flow from each injector housing may comingle with either the radiator bypass or radiator inlet.

Click the image to open in full size.

Coolant refilling

As an aside, it appears that coolant refilling could be accomplished by first separating coolant hoses (each side) from both of the injector housing coolant manifolds. Remove cap from coolant expansion tank. Fill one hose (will fill radiator and will fill other side coolant hose to same level) with coolant. This should also fill other side of thermostat including the water pump and injector housings with coolant (watch for coolant coming out of either side injector housing coolant manifold). Pressurizing the drivers side open crossover coolant hose "L" is the best method of getting the air out of the coolant system. Reattach coolant hoses to injector housing coolant manifolds. Lastly, fill coolant expansion tank and replace cap.

Last UPDATE of post 12 Nov, 2013

Last edited by Dynomite; 11-27-2013 at 07:00 AM.
Dynomite is offline   Reply With Quote
Old 02-20-2012, 11:46 PM   #13
Dynomite
Tech Contributor
Support Corvetteforum!
 
Dynomite's Avatar
 
Member Since: Sep 2009
Default TB Coolant Discussion

TB Coolant Discussion

Some guys who swear by the fact that TB coolant flow keeps the TB warm and prevents icing are missing some key technical issues me thinks

Explanation

1. The TB Coolant is not a flowing system once the engine is heated up. The TB coolant on passenger side connects to a "T" back to the pressurized overflow tank just in front of the passenger under the hood (highest point in the system). The "T" is in the line from the air vent/heat expansion path from the top passenger side of radiator. That radiator vent/heat expansion path is also NOT flowing once the engine heats up. The TB Coolant Design is in regard to VENTING Air and not TB heating and then only during initial engine heating up (And then only if you have a lot of air in your coolant system after opening up your coolant system for repairs or leaks such as coolant leak repair or Plenum/IH Housing, Head removal or Water Pump/Thermostat/Radiator repair).

2. The TB coolant and top side of radiator vent back to the pressurized expansion tank (High point in coolant system) receive air/coolant as the engine is heated up and coolant/air in the system expands.

3. As coolant/air expands (as engine is heated up) the excess air/coolant overflows through the pressurized radiator cap in that high point pressurized expansion tank to the coolant reservoir under the passenger side headlight.

4. The purpose of that system is to allow coolant/air to move back and forth between the coolant expansion tank and coolant reservoir as coolant/air expands during engine heats up/cools down purging the system of air. This occurs by the fact once the coolant system air is forced out the pressurized radiator cap to coolant reservoir, only coolant returns from the reservoir as the coolant system retracts while engine cools once turned off (assuming you have proper coolant levels in the overflow tank under the passenger side head light).

5. Now back to TB coolant.............There is no coolant/air flow between the top side of radiator or TB to the coolant expansion tank on passenger side (high point in system) once the engine is heated up. A CAVEAT would be the small coolant head loss in the IH manifolds to the top side of radiator which would be equalized by a identical small coolant head loss of any flow through the TB and back to the top side of radiator via the coolant expansion tank (a very small diameter line and a very small coolant flow rate).

6. It appears to me that the only reason for TB coolant (when there is movement of coolant/air between top side of radiator, TB, and expansion tank) is to warm up the TB QUICKER during engine initial heat up and to move coolant/air from the IH housing coolant manifolds back the coolant expansion tank quicker. This all happens when you first start the engine up when the thermostat is closed and radiator circulation is stagnant.

7. In other words, with the LT5 coolant system at first start up with a cold engine the coolant is recirculated entirely in the engine and not through the radiator. The TB coolant as the engine coolant expands then allows coolant/air a path back to the coolant expansion tank when there is no return of that expansion from the radiator since the radiator is cold and not functioning yet.

8. Once the thermostat opens up the radiator coolant expansion occurs as the radiator heats up pushing more air from the top side of the radiator to the expansion tank. So if you block the TB coolant you do not let the air out during initial engine coolant heating but that is not an issue if you do in fact have most of the air out of the system during initial coolant fill. Coolant/air can expand through the radiator even though the thermostat is closed however as the engine heats up.

9. The coolant system air has a second chance to excape to the expansion tank during radiator coolant/air expansion once the thermostate opens up allowing hot coolant to flow through the radiator.

10. Throttle Body Coolant Line Blocked see item #3 TB Coolant Eliminated.

Click the image to open in full size.


Last UPDATE of post 13 June, 2013

Last edited by Dynomite; 06-16-2013 at 09:54 AM.
Dynomite is offline   Reply With Quote
Old 02-20-2012, 11:46 PM   #14
Dynomite
Tech Contributor
Support Corvetteforum!
 
Dynomite's Avatar
 
Member Since: Sep 2009
Default Coolant Characteristics (Mix, Pressure, Elevation)

Coolant Characteristics (Mix, Pressure, Elevation)

High Coolant Temperatures have happened before........stay out of slow traffic in hot weather for long periods of time especially climbing steep hills.

Check for coolant in the oil (coolant will sit at the bottom of oil pan). Check for oil in the coolant (oil will float on top of the coolant in the coolant reservoir in front of passenger side). If your oil level seems to be increasing or decreasing or your coolant level decreasing abnormally that is another indicator. You are checking for a failed Head Gasket.

Do a compression test once in a while to make sure nothing is going on with head gasket, valves, rings.

Then sit back and drive up that hill keeping the speed up to at least 20 mph....40 mph preferred........you NEED some dynamic air flow around the radiator

If you continue to do this......definitley turn on your fans at lower coolant temperatures and Turn your AC off at those high temps when climbing that hill (better for you to suffer than your engine)

Stock Fan Control on ZR-1s
'90 - '92 Primary fan on at 226 degs. F, off at 216 degs. Secondary Fan on at 234 degs. F, off at 225 degs.

Marc's chips turn Cooling Fans on at 205 deg and off at 200 deg. Those Chips will give you a few minutes more of cooling you do not have with a stock chip maybe enough time to get you to the top of the hill

Custom Engine Calibrations
LT5 Performance Engine Calibrations

I expect you will have NO issues unless you have run with loss of coolant such that you were circulating air entrained coolant. Or coolant mix was such that those temperatures caused coolant to boil off which you would notice in your coolant overflow tank under right headlight

This from a Google Search for Specifics on Boiling Characteristics of Coolant
The pressure cap on a cooling system is the key to raising the boiling point of the 50/50 mix of antifreeze and distilled water. For every pound of pressure cap rating the boiling of point of the above mixture raises 3 degrees. If you had plain water in your cooling system with a 15 pound pressure cap the water would boil @ 257 degrees. If you had a 50/50 mix of antifreeze and water the coolant would boil @ 265 degrees with a 15 pound cap. The boiling point would raise to 270 degrees if you had a 60% antifreeze mixture with a 15 pound cap. If you had a 70% mixture the boiling point would raise to 276 degrees.

Don't be fooled by the old wives tail that by adding a richer antifreeze mixture will keep the complete system cooler. In fact it works just the opposite. As you know pure antifreeze has a higher viscosity rating than plain distilled water. The higher the antifreeze mixture percentage its ability to adsorb heat from the engine goes down. The higher the antifreeze mixture percentage also retards the radiator's ability to get rid of the coolant heat.

Race cars use pure water in their cooling systems because it adsorbs heat from the engine and gets rid if it in the radiator better than any antifreeze mixture.

It's to your cooling systems advantage to mix your pure antifreeze/water mixture to protect the engine from freezeing 10 degrees lower than last years coldest day last winter.

Pure antifreeze boils @ 387 degrees Farenheit in atmosphere.

I also happen to know you are at high elevations

This from a Google Search on Specifics on the Boiling Characteristics of Coolant Related to Elevation
With NO pressure cap......Water boils at 212 degrees at sea level. Water boils at 204 degrees at 4,000 feet elevation. Water boiled at 192 degres at 9,000 feet elevation. A 50/50 mixture of water to anti freeze will boil at 227 degrees at sea level. A 50/50 mixture of water to anti freeze will boil at 220 degrees at 4,000 feet elevation. A 50/50 mixture of water to anti freeze will boil at 212 degrees at 9,000 feet elevation. The anti freeze referred to here is ethylene glycol based. Both of these are with no pressure cap on the radiator. You can add 7 degrees to the boling point with the addition of each 1lb of pressure on the pressure cap.

Last UPDATE of post 14 Aug, 2013

Last edited by Dynomite; 07-25-2014 at 03:13 PM.
Dynomite is offline   Reply With Quote
Old 02-20-2012, 11:46 PM   #15
Dynomite
Tech Contributor
Support Corvetteforum!
 
Dynomite's Avatar
 
Member Since: Sep 2009
Default Lifting The LT5

Lifting The LT5

1. Engine Lift
a. Harbor Freight 2 Ton Engine Lift set on 1 Ton for this lift.
c. 1 Ton setting provided the reach to install the engine in the ZR-1 while on KwikLift with Hood installed.

Click the image to open in full size.

2. TIPS and Notes Additional TIPS
a. ZR-1 on KwikLift with front lowered to assist in tilting engine to rear during installation.
b. Remove windshield wiper motor (drivers side). *
c. Engine was installed without the bell housing, plenum, fuel rails. **
d. Use custom design spreader bar under the load leveler and Harbor Freight 2 ton hydraulic lift. ***
e. With this setup, you can install LT5 in ZR1 on KwikLift with front of ZR1 facing forward (front of KwikLift on ground).
f. Leave hood on.
g. With this set up I have recently pulled an LT5 with SW Headers installed with no issues. You cannot use the standard lift eyes if you want to install the LT5 with headers however (use soft slings around Flywheel and Harmonic Balancer). See Installing Engine In ZR1

*Note: Reach through windshield wiper grille (the small removable access above windshield wiper motor arm connection). With socket wrench just loosen the two nuts on each windshield wiper arm (DO NOT REMOVE THOSE NUTS). Slide both windshield wiper arms off the motor sockets. Relube those windshield wiper sockets on the motor when reinstalling the windshield wiper arms. Remove the three bolts holding the windshield wiper motor in place and remove motor. Locate the wiper arm at 5:00 clock time looking toward front of engine. To reinstall the wiper arms reaching through the removable access with a long needle nose plyers you can slip the arms back on the socket and tighten the nuts after you reinstall the wiper motor. Relocate the wiper arm at its home postion before attaching the wiper arms (9:00 clock time looking toward front of engine). How to Replace the Wiper Motor

**Note: Install Cam Covers and plugs before installing the engine in the Z. This prevents anything from falling into the Camshaft area or Cylinders during engine installation. It is much easier to install Cam Covers with engine out of Z vice with engine installed (requires the loosening of "C" Beam Plates and Motor Mounts to tilt engine down in rear for access of two lower rear Drivers Side Cam Cover Bolts).

***Note: The custom design spread bar adapter was used to match the distance between the standard LT5 lift padeyes and Load Leveler lift points. The Load Leveler is attached to hydraulic lift on a swivel which allows the engine to be rotated around the vertical axis. You cannot use the standard lift eyes (shown in photo) if you want to install the LT5 with headers however (use soft slings around Flywheel and Harmonic Balancer).

Click the image to open in full size.

3. Summary Installing a LT5 in a 91' ZR-1
a. I removed the Wiper Motor as Ben suggested which was a 15 minute job. That removed the possible contact of the Wiper Motor with my powder coated Cam Covers while lowering the Harmonic Balancer past the front cross member

b. I installed the LT5 without Plenum, Bell Housing, or Pressure Plate. Those items were attached after the engine was installed in the Z.

c. I used KwikLift ramps sloped down in front for engine installation and then raised for completion of component installation.

d. It was easy sliding (KwikLift Creeper) under the Z for Pressure Plate and Bell Housing installation followed by Transmission and Drive Line installation with "C" Frame alignment.

e. That followed by SW Headers and SW exhaust system installation and adjustment.

f. The Ron Davis Radiator was then installed last adjusting ALL SAMCO coolant hose clamps for accessability using my flat screw driver. The last SAMCO hose installed was the short "L" on the drivers side IH Housing Coolant Manifold after filling with coolant making sure I had coolant at that level.

g. Installing the Plenum after engine installed was almost a necessity as the starter electric and Ignition Module (attached under the Plenum) electric was accessable only within the engine compartment. This also was a necessity for installation of the AC Compressor (before installation of the Plenum) under the Plenum (AC not disconnected). The Power Steering Pump was then connected to its position in front of the drivers side Head without disconnecting Power Steering Hydraulics.

h. I installed the Wiper Motor and Plenum after the engine was installed avoiding contact of the MAP sensor with the rear firewall. Installing the Wiper Motor and Plenum was a 15 minute job for each with engine installed.

I wanted to get used to installing the Plenum with engine installed

The only thing I forgot to do before I installed the LT5 was check the Oil Pressure Regulating Valve (OPRV) Cover bolts for tightness which I later did but hard to accomplish with engine installed

Last UPDATE of post 15 Feb, 2013

Last edited by Dynomite; 04-07-2013 at 12:32 PM.
Dynomite is offline   Reply With Quote
Old 02-20-2012, 11:46 PM   #16
Dynomite
Tech Contributor
Support Corvetteforum!
 
Dynomite's Avatar
 
Member Since: Sep 2009
Default Lifting and Towing the ZR-1

Lifting and Towing the ZR-1

See ZR-1 Transmission Install and Lift Tricks for a general discussion related to lifting the ZR-1 during transmission installation.

1. Lifting the ZR-1.
ZR1 Lifting techniques using a floor jack, jack stands and ramps are described herein. A Steel adapter has been designed and proven safe to lift the rear axle directly under the center of the rear spring mount using a floor jack. The ZR1 can be lifted to a height such that ramps can be inserted from the side under each rear wheel.

A Wooden Drive On Adapter has also been designed to get the front lift point (The front cross member just in front of the oil pan) high enough so a Floor Jack can be positioned under the Front Cross Frame (one Wooden Drive On Adapter is used under each front wheel). The Front Wooden Drive On Adapter consists of three 2x12s (you can see the approximate lengths of each of the three pieces) screwed together to form a single Wooden Drive On Lift. The Wooden Drive On Adapter allows you to drive on without interferring with the front skirt.

The ZR1 can then be driven off the ramps when work is completed without any further use of a floor jack. The adapter can be positioned on a floor jack lift pad and rolled under the spare tire area directly under the rear spring mount just behind the stock exhaust system.

The adapter is a 4 inch OD by 3/8 wall extra strong pipe section 5 inches long.

The pipe adapter is captured between the rear spring mount bolts, exhaust, spare tire on the ZR1 and by the floor jack lift pad which is usually cupped securing the pipe adapter from lateral movement.

The Steel Pipe Adapter


Lifting the Rear Axle


The Drive Off Ramp under each rear wheel..................The Drive On Adapter under front wheels


Lifting The Front Cross Frame (note wood block between jack pad and cross frame)


2. Towing the ZR-1.

Emergency Kit.....15 ft tow rope (5,000 lb vehicle rating), Jumper Cables, Tow Adapter, Lug Wrench


Daniel_Mc provided a concept/photo of a Tow Adapter for a ZR-1 that in its simplicity I just could not pass up
So......I designed one after the photo provided by Daniel_Mc and had a local steel shop fabricate the Tow Adapter.
I did some towing tests to see if there are any issues or limitations. One limitation will be towing at an angle in a turn which this adapter without being bolted on the back side of the cross member will not function (that did not seem to be an issue during the tow tests). The Tow Adapter is made from 1/8 inch steel plate which is substantial and flexible enough to tow the ZR-1 with Nylon Tow Ropes having a steel hook on one end.



The Tow Adapter is made to engage the 1-1/4 inch square tubing of the frame support under the front of the ZR-1.


A. Tow Adapter Description.

When needed for towing, the Tow Adapter is slipped through a 4 inch x 1/8 inch slot in the front Air Spoiler. There are two 1/2 inch holes (not shown in photos) in the Tow Adapter plate (one for 90' and one for 91') depending on which model year you use the Tow Adapter. 1/4 inch Allen Head Bolts are inserted into one hole or other with large Pan Head Washers on each side (and adjusted snug against the Air Spoiler. The 1/4 inch Allen Head bolt keeps the Tow Adapter in place if you want to keep it installed as you drive.


The best tool to make the 4 inch x 1/8 inch slot in the front Air Spoiler is an Angle Grinder (with Cut Off wheel).
The Tow Adapter sticks out beyond the skirt about 4 inches on a 91' and about 6 inches on a 90'.



A nylon tow rope (a steel hook on the end is required) can be attached to the receiver in the Tow Adapter (2 inch x 2-1/2 inch hole).

B. Installing the Tow Adapter.

The Tow Adapter is simply installed by reaching under the Air Spoiler and inserting the front tip of the Tow Adapter into the slot in the Air Spoiler. Push forward and then lightly tap the rear of the Tow Adapter onto the cross member with a small hammer. The Tow Adapter is removed by lightly tapping on the front tip of the Tow Adapter with a small hammer.

C. Testing Tow Adapter.

The Tow Adapter was tested towing the 91' ZR-1 with a lawn tractor on gravel. A small nylon sling was used for towing. The Tow Adapter was NOT bolted to the frame in any way.



When towing at an angle of 45 degrees the front wheels were turned in the direction of towing. With a lawn tractor and the use of this Tow Adapter, the ZR-1 could be backed into the street and with a lawn tractor pulled and then releasing the clutch in second gear starting the engine if your battery is dead. There was no deformation of the Tow Adapter during these tests

Towing in a straight line......................................... ...Towing at an angle of 45 degrees.


D. Storing Tow Adapter.

I have elected to carry the tow adapter on the right side of the passenger seat where it fits perfectly with my Gorilla Lug Wrench. I have found with the tow adapter installed it is easy to hit it with a curb when parking. It is very easy to slip in place if needed without jacking the vehicle.

Tow Adapter Stored next to Passenger Seat......................Gorilla Lug Wrench


Last UPDATE of post 16 May, 2014

Last edited by Dynomite; 04-29-2014 at 07:30 PM.
Dynomite is offline   Reply With Quote
Old 02-21-2012, 08:08 AM   #17
rickyrj1
CF Senior Member
Support Corvetteforum!
 
rickyrj1's Avatar
 
Member Since: Jul 2005
Default

Tremendous post! Great Job & Thank You for your time & effort in putting it together.
rickyrj1 is offline   Reply With Quote
Old 04-04-2012, 02:04 PM   #18
Dynomite
Tech Contributor
Support Corvetteforum!
 
Dynomite's Avatar
 
Member Since: Sep 2009
Default Engine Lubrication System Functional Discussion

Engine Lubrication System Functional Discussion

1. Pre Installation Oil Pressure (7.6 quarts without filter Amsoil 10W-40)

a. Oil pressure 55 lbs starting and Chain tensioners set and pressurized.
b. Forgot to "Pre Installation" check the Oil Pressure Regulating Valve (OPRV) cover two 6 mm bolts (8 mm heads). Had to remove some up front coolant hoses and belt tensioner after engine was installed to tighten those two 6 mm bolts (the bottom 6 mm bolt was very loose). There was an oil leak from that OPRV cover making it appear that the oil pan gasket was leaking.
c. Rotated the Oil Pressure Switch 90 deg which allows for easy access and the additional JIC connection (capped in photo) allows for Pre Oiler or mechanical oil pressure gauge connection.

As an aside
2. Oil Pressure Sensor (Dash Gauge) malfunction I changed out the oil pressure sensor for the dash gauge (top of oil filter) after engine installation. Oil pressure cold was registering 75 lbs. After changing out the oil pressure sensor, oil pressure is registering 55 lbs steady hot or cold and does not increase much with revs.

Oil Filter Adapter Sensors ........................................ ..Oil Filter Adapter Ports and Sensors
Click the image to open in full size.Click the image to open in full size.

3. LT5 Oil Pressure and Oil Temperature Regulation

a. The Oil Pressure Regulation Valve (OPRV) (just after oil pump) opening pressure is 50-60 psi.

Click the image to open in full size.Click the image to open in full size.

b. The Oil Cooler Bypass Valve on the Oil Filter Adapter allows oil to bypass the open oil cooler at hot temperatures since oil cooler is a bit restrictive. This valve raises the pressure a bit on the flow trying to bypass the oil cooler making sure some oil does go through the oil cooler.
c. The Oil Temperature Control Valve on oil filter housing opens oil flow from the oil cooler. The temperature opening characteristics of this valve are Thermostat-Open-203 degree F, Fully open-266 degree F.
d. The Oil Filter Bypass Valve on oil filter housing allows oil to bypass oil filter if the oil filter becomes to restrictive.
e. Oil pressure is always available to the Oil Cooler Bypass Valve. Oil flows from the oil pump (past the OPRV) to the oil filter through the Oil cooler and through the Oil Cooler Bypass Valve or directly through the Oil Temperature Control valve when the oil temperature is below 203 deg F. The oil cooler flow return and Oil Cooler Bypass Valve are open at the same time. The oil flow from the oil cooler is never totally blocked (half moon cutout of shuttle valve). The Oil pump flow at Idle is 1.6 gpm and the Oil pump flow at 7,000 rpm is 9.1 gpm.

4. Oil Filter Adapter Functional Details

Oil Temperature Control Valve Assembly.....................Oil Temperature Valve Thermostat opens at 203 deg F
Click the image to open in full size.Click the image to open in full size.

Oil Temperature Shuttle Valve Open (HOT)............................Oil Termperature Shuttle Valve Closed (COLD)
Click the image to open in full size.Click the image to open in full size.

Oil Cooler Bypass Valve Inside........................................ ..........Oil Cooler Bypass Valve Outside
This valve raises the pressure a bit on the flow
trying to bypass the oil cooler making sure some
oil does go through the oil cooler
.
Click the image to open in full size.Click the image to open in full size.

Oil Temperature Control Valve Compensation..............Oil Filter Adapter (Oil Temperature Valve Housing)
The orifice allows the valve to move
without being hydraulically locked in place.

Click the image to open in full size.Click the image to open in full size.

5. Oil Flow Paths.

COLD - Oil Temperature Less than 203 deg F.
a. The Oil is pushed up from the bottom Port on the Oil Filter Adapter Housing past the TOP Oil Cooler Port which is ALWAYS OPEN.
b. The Oil then is pushed through the Top Opening of the Oil Temperature Control Valve to the bottom of the Temperature Control Valve Port.
c. The Oil is also pushed against the Oil Cooler Bypass Valve which it will not open since the path through the Temperature Control Valve Port is Open.
d. Some Oil flows through the Oil Cooler back into the Bottom Oil Cooler Port since the Bottom of the Temperature Control Valve has a Half Moon Port that is Always Open.
e. The Oil then pushed up through the Oil Filter Outside Diameter and also against the Oil FIlter Bypass Valve just in case the Oil Filter is too Restrictive.
d. The Oil is then pushed out the center Oil Filter Adapter Fitting (M20x1.5) past the Oil Pressure Sensor for Dash Gauge, past the Oil Temperature Sensor, and past the Oil Pressure Switch Light on Dash Sensor out the Top of the Bottom Ports of the Oil Filter Housing Adapter to the Crankshaft and Top End Camshafts. The Oil pressurizes and lubricates the Timing Chain Tensioners and Timing Chains as the oil flows.
See Timing Chain Idler Sprocket Lubrication and Installation

WARM - Oil Temperature greater than 203 deg F but less than 266 deg F.
a. The direct Oil Path to the Oil Filter through the Oil Temperature Control Valve is not yet closed but is becoming Restrictive.
b. The Bottom Port of the Oil Temperature Control Valve is Opening beyond the Half Moon Port.
c. The Oil Path around the Oil Temperature Control Valve through the Oil Cooler Bypass Valve may come into play.
d. The Oil is then pushed out the center Oil Filter Adapter Fitting (M20x1.5) past the Oil Pressure Sensor for Dash Gauge, past the Oil Temperature Sensor, and past the Oil Pressure Switch Light on Dash Sensor out the Top of the Bottom Ports of the Oil Filter Housing Adapter to the Crankshaft and Top End Camshafts. The Oil pressurizes and lubricates the Timing Chain Tensioners and Timing Chains as the oil flows.
See Timing Chain Idler Sprocket Lubrication and Installation

HOT - Oil Temperature greater than 266 deg F.
a. The Top of the Oil Temperature Control Valve Port Through the Oil Temperature Control Valve is now completely Closed.
b. All Oil is directed through the Oil Cooler (Top Oil Cooler Port) or through the Oil Cooler Bypass Valve around (outside) the top of the Oil Temperature Control Valve.
c. The Bottom of the Oil Temperature Control Valve Port is now completely open allowing Oil to go from the Oil Cooler through the bottom of the Oil Temperature Control Valve directly to the Oil Filter and Oil Filter Bypass Valve.
d. Some Oil passing through the Oil Cooler Bypass Valve will flow directly to the Oil Filter and Oil Filter Bypass Valve depending on the Restrictions to Oil Flow through the Oil Cooler.
e. The Oil is then pushed out the center Oil Filter Adapter Fitting (M20x1.5) past the Oil Pressure Sensor for Dash Gauge, past the Oil Temperature Sensor, and past the Oil Pressure Switch Light on Dash Sensor out the Top of the Bottom Ports of the Oil Filter Housing Adapter to the Crankshaft and Top End Camshafts. The Oil pressurizes and lubricates the Timing Chain Tensioners and Timing Chains as the oil flows.
See Timing Chain Idler Sprocket Lubrication and Installation

6. After Market SS Oil Cooler Lines

a. As an aside, the after market SS oil cooler lines and aluminum manifold are a bit larger ID than stock with 10AN aeroquip reusable hose end fittings (1/2 inch ID). The 10AN adapter at the aluminum manifold (appears to be M18 x 1.5 or 10AN O ring straight thread) adapts the 10AN ID to the stock manifold hose ID (appears to be 3/8 inch). On the other end at the oil filter housing, the 10AN SS oil cooler line fittings adapt to the 12AN oil filter housing fittings. The stock oil cooler lines have 12AN fittings but smaller than 10AN hose ID.

Last UPDATE of post 18 Jan, 2014

Last edited by Dynomite; 04-05-2014 at 10:27 PM.
Dynomite is offline   Reply With Quote
Old 04-04-2012, 02:06 PM   #19
Dynomite
Tech Contributor
Support Corvetteforum!
 
Dynomite's Avatar
 
Member Since: Sep 2009
Default LT5 Lubrication Tricks

LT5 Lubrication Tricks

1. Oil Pressure Switch Rotated.
The Oil Pressure Switch was rotated 90 deg which allows for easy access.
The additional JIC connection (capped in photo) allows for a Pre Oiler or mechanical oil pressure gauge connection.

Oil Pressure Switch rotated 90 Deg
Click the image to open in full size.

Background - LT5 Oil Pressure Regulation

The Oil Pressure Regulation Valve (just after oil pump) opening pressure is 50-60 psi Oil Pressure Regulation Valve

The Oil Cooler Bypass Valve on oil filter housing allows oil to bypass the open oil cooler at hot temperatures since oil cooler is a bit restrictive. This valve raises the pressure a bit on the flow trying to bypass the oil cooler making sure some oil does go through the oil cooler.

The Oil Temperature Control Valve on oil filter housing opens oil flow from the oil cooler. The temperature opening characteristics of this valve are Thermostat-Open-203 degree F, Fully open-266 degree F.

The Oil Filter Bypass Valve on oil filter housing allows oil to bypass oil filter if the oil filter becomes to restrictive.

It appears that oil flow is always open to the Oil Cooler Bypass Valve. Oil is not always open directly from the oil pump to the oil filter except through the Oil cooler and Oil Cooler Bypass Valve when the flow from the oil cooler is open. The oil cooler flow return and Oil Cooler Bypass Valve are open at the same time. When the oil flow from the oil cooler is blocked, the oil from oil pump to oil filter is open flow. Oil pump flow at Idle-1.6 gpm, Oil pump flow at 7,000 rpm-9.1 gpm.

As an aside, the after market SS oil cooler lines and aluminum manifold are a bit larger ID than stock with 10AN aeroquip reusable hose end fittings (1/2 inch ID). The 10AN adapter at the aluminum manifold (appears to be M18 x 1.5 or 10AN O ring straight thread) adapts the 10AN ID to the stock manifold hose ID (appears to be 3/8 inch). On the other end at the oil filter housing, the 10AN SS oil cooler line fittings adapt to the 12AN oil filter housing fittings. The stock oil cooler lines have 12AN fittings but smaller than 10AN hose ID.

2. Oil Catch Can.
The Elite Oil Catch Can is attached directly to the front of plenum vacuum source and directly to the PVC connection (use 1/4 inch brass m/m hose nipple) at rear of plenum using SS Braided hose and reusable swivel hose fittings.

Elite Oil Catch Can
Click the image to open in full size.
Click the image to open in full size.

a. Used a small steel channel (about 3/8 x 1 x 6 inches) which the flanges are ground to fit the curve of the inside wheel well (at a 45 deg angle).
b. Drilled two 3/8 inch holes in the steel channel to fit the hanger that came with the Oil Catch Can.
c. Drilled two holes to match in wheel well to match.
d. The fit of the oil catch can is very tight against inside of wheel well.
e. Oil Catch Can sits directly above the upper A-Arm rear pivot within 1/2 inch of the pivot.
f. Painted the steel channel black.
g. Used small steel hose clamps on each end of SS Braided hose which keeps hose SS braid from fraying.

Click the image to open in full size.

The Oil Catch Can Mount was attached using 1/4 inch Wing Nuts for easy removal. The PCV Nipple is 1/4 inch brass male/male installed in PVC rubber connector.
Oil Catch can Elite Engineering USA
SS Braided hose Summit Racing Braided Hose
Hose ends Summit Racing Hose Ends
Click the image to open in full size.Click the image to open in full size.

3. Dipstick Handle Replace.
The Dipstick Handle which is Plastic is usually cracked. I replaced the handle with a Chrome Oil Dipstick Handle

I removed the cracked Plastic Stock Dipstick Handle. Once removed, there is a FLAT with a dimple. I drilled the dimple through with a 5/32 drill bit. I then put that end of the dipstick to a grinder and shortened that end so the hole I drilled lined up with the New Chrome Dipstick Allen Head Bolt.
Click the image to open in full size.

The Chrome Dipstick Handle was then installed using several small washers to secure/compress the existing shaft between the two halves of the New Chrome Dipstick Handle.

Click the image to open in full size.Click the image to open in full size.

The existing straight portion of the Dipstick was then placed in a vice and the handle bent and twisted to align the Chrome Handle with the Cam Covers similar to the original alignment.

The New Billet Aluminum Dipstick with BIG RED OIL Letters fits perfectly with the Billet Aluminum Oil Fill Cap I found on Ebay
Search Ebay CORVETTE C4 LT1 BILLET CHROME SCREW IN STYLE OIL CAP
Ebay Billet Aluminum Oil Cap (fits 90' & 91' LT5 & L98).

Click the image to open in full size.Click the image to open in full size.

If you place the stock Dipstick in a vice at the flat just below the first squiggles and then with Dipstick Handled INSTALLED...you can twist the Stock Dipstick any direction you want but you have to go over center to make the twist stay. You can also bend the part between the collar and handle but you then have to keep the Dipstick from turning. So it is not too easy for some.......I was about to take a torch and heat the Stock Dipstick End before I figured out that hardened metal Dipstick could be twisted and bent without breaking.

The beauty of the Stock Dipstick is if you break off the cheap Plastic Handle there is a very nice FLAT with that dimple where the outer part of the top part is swedged onto the smaller Flat making a slighty LARGER Flat to work with.

I was going to enclose the bottom of the New Chrome Dipstick Handle but found that not necessary because it absolutely does not show at all untill you remove the Dipstick. I may enclose that area with some JB Weld and Rustoleum Black Heat Resistant Paint.

Last UPDATE of post 19 Sep, 2013

Last edited by Dynomite; 04-29-2014 at 07:38 PM.
Dynomite is offline   Reply With Quote
Old 07-12-2012, 11:22 PM   #20
Dynomite
Tech Contributor
Support Corvetteforum!
 
Dynomite's Avatar
 
Member Since: Sep 2009
Default Potential Oil Leaks and the OPRV Cover Plate

Potential Oil Leaks and the OPRV Cover Plate

1. Potential Oil Leaks

A. OPRV (Oil Pressure Regulating Valve cover plate )......It will appear that the oil pan front bolts are loose and leaking at gasket.
B. Oil Pressure Switch and Oil Pressure Sensor.....
C. Cam Covers.....
D. Camshaft circular rubber plugs (two each end of each Head).....
E. Oil Cooler Hoses/Connections.....
F. There is an Oil Level Sensor on Oil Pan....(not on 1990).
G. Oil Pan Bolts (especially front three 8mm bolts).
H. Center Bolt/Stud on Exhaust Manifold (one each side).
But I would say the one that stumped me the most was that OPRV cover. And prolly the hardest to get at (two 6 mm bolts using an 8 mm Socket wrench).

Marc Haibeck Oil Leak Summary

2. Oil Pressure Regulating Valve Cover Plate

The Oil Presure Regulating Valve is located on passenger side front of engine just above the oil pan. The two 6 mm bolts using an 8 mm socket wrench that hold the OPRV cover plate (and gasket) to the Engine sometimes come loose.



There is an OPRV Cover plate gasket but I just removed and cleaned the two 6 mm bolts (8 mm heads) one at a time and applied Blue Loctite (You could use Red Loctite as you like). I used Blue Loctite because I figured it was a temporary fix but appears to be a permanent fix

Since such a tight area to work in with engine in car I removed each 6 mm bolt one at a time so I did not drop the cover plate or gasket. So...no permatex on that gasket but both 6 mm bolts cleaned and Blue Loctite applied.

Just checked those two 6 mm bolts with 8 mm heads (15 mm long) on my crate engine and they are SOOOOO easy to get at with engine out of car (Bolt torque would be 89 in-lbs)

Since the bolts and plate were so loose I figured correctly just tightening the 6 mm bolts with Blue Loctite would solve the oil leak and loose bolt problem (The gasket was stuck to the engine block and not the cover plate). I tightened the bolts by feel as I could not get torque wrench even close to that area unless engine is out of car.

No more oil leaks in that area at all

Torque for 6 mm bolts is about 89 in-lbs but in that area with no oil pressure to contend with less bolt torque with Blue Loctite or maybe Red Loctite is just fine

Last UPDATE of post 20 Sep, 2013

Last edited by Dynomite; 09-16-2013 at 06:22 PM.
Dynomite is offline   Reply With Quote
Old 07-12-2012, 11:22 PM
 
Go Back   Corvette Forum > C4 Corvettes, 1984 - 1996 > C4 ZR-1 Discussion
Reload this Page Tech Info - LT5 Modifications/Rebuild Tricks (500+hp)
Reply

Tags
1, 1990, air, box, camshaft, corvette, diameters, l98, lt5, max, oil, optimum, plenum, psi, specs, stage


Thread Tools Search this Thread
Search this Thread:

Click for Advanced Search

Posting Rules
You may not post new threads
You may not post replies
You may not post attachments
You may not edit your posts

BB code is On
Smilies are On
[IMG] code is On
HTML code is Off
Trackbacks are Off
Pingbacks are Off
Refbacks are Off

Forum Jump

Similar Threads
Thread Thread Starter Forum Replies Last Post
Brakes That Will Stop A Freight Train Dynomite C4 ZR-1 Discussion 11 10-07-2013 12:31 PM
LT5 Eliminated Systems Questions TCurtner C4 ZR-1 Discussion 0 04-24-2013 07:36 AM
Tech Info - LT5 Eliminated Systems Dynomite C4 ZR-1 Discussion 13 02-27-2013 01:01 PM
Tech Info - LT5/ZR-1 Technical Calculations Dynomite C4 ZR-1 Discussion 20 09-09-2012 06:30 PM
Tech Info - LT5 New Rebuild Zero Compression Dynomite C4 ZR-1 Discussion 9 09-09-2012 06:27 PM


All times are GMT -4. The time now is 04:16 AM.


Emails & Password Backup